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Abstract. We present a general and systematic method for determining the chiral indices of carbon nan-
otubes. This method relies on the semi-quantitative analysis of experimental selected area diffraction
pattern intensities, together with extensive comparison with kinematic theory. We show how to retrieve
the chiral indices of single walled or multiwalled carbon nanotubes, even when their radii are large (up to
approximately 40 Å). All theoretical and experimental sources of errors are discussed. By discussing the
experimental case of a double-walled carbon nanotube, we show how it is possible to determine the chiral
indices of each of its constituant tubes independently, by analyzing parts of the diffraction pattern where
the contributions of these tubes do not interfere. Using the parts where all the contributions do interfere,
we successfully crosschecked independently the preceding determination.

PACS. 61.14.Lj Convergent-beam electron diffraction, selected-area electron diffraction, nanodiffraction –
61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 81.07.De Nanotubes

1 Introduction

A Single Walled Carbon Nanotube (SWNT) can be de-
scribed conveniently as a wrapped sheet of graphene. This
wrapped structure was evidenced early on Multi Walled
carbon nanotubes (MWNT) [1] and on SWNT [2] by se-
lected area electron diffraction (SAED) experiments in
a transmission electron microscope (TEM), where the
diffraction pattern of an isolated nanotube can be ob-
tained. The structure of a nanotube can be uniquely iden-
tified thanks to two parameters, (L, M), −L/2 � M � L,
that are the coordinates of the wrapping vector in the hon-
eycomb basis of the graphene sheet. Alternatively, it can
be also uniquely described by the radius R of the nanotube
and its helicity ϕ which is the angle enclosed between the
circumference of the tube and the nearest zigzag chain.
The relation between (R, ϕ) and (L, M) is given by

R = dcc

√
3(M2 + L2 + LM)

2π
(1)

where dcc is the distance between first neighbour atoms,
and

ϕ = arctan(
√

3M/(2L + M)). (2)
a Present address: Laboratoire de Physique des Solides, Uni-
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The determination of the exact values of (L, M) or equiv-
alently (R, ϕ) for an isolated SWNT, or for a small
MultiWalled Nanotube or a rope of SWNT is of great
importance, in particular for comparison with physical
measurements. For example, it is well known that the
band structure of SWNT has or does not have a gap at
half-filling, depending on the exact value of (L, M) [3].

However, a complete structural determination is in
practice a difficult task. An experimental technique with
enough spatial resolution to study a unique (or a small
number of) nanotube is required. This technique should
also provide a high enough signal to noise ratio (SNR) for
the structure of the nanotube to be determined, which
means, in practice, enough SNR for the experimental
data to be compared with relevant theoretical simulations.
With this in mind, two types of techniques can be used.
First, structural methods rely on the possibility of access-
ing R and ϕ either in real space (Scanning Tunnelling
Microscopy [4,5] and phase reconstructed high resolution
image (PRHR) [6]) or in reciprocal space (SAED [7]).
A second type of determination (that can be used in
conjunction with structural techniques) is based on spec-
troscopic measurements, either by Scanning Tunnelling
Spectroscopy or by Raman spectroscopy. The Raman and
STS spectra present well defined and sharp peaks related
to Van-Hove singularities (VHS) in the electronic density
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Fig. 1. Helicity ϕ and computed apparent helicity ϕapp of carbon nanotubes as a function of their radius. ϕapp is the helicity
that would be deduced from a diffraction pattern from a naive point of view where the diffraction pattern of a SWNT is that
of two rotated graphene sheets. Top: The difference between the two angles is huge, but decreases with increasing radius and
helicity value. The lines define typical experimental errors when measuring radius and helicity on a typical nanotube of radius
R ≈ 20 Å and ϕapp ≈ 15◦. Bottom: magnification of the error area. It is worth noting that, unless taking into account the
difference between ϕ and ϕapp, only half of the possible solutions would be retrieved from measurement.

of states of the nanotube. The positions of the VHS are
highly dependent on the exact value of (L, M). Given
a model band-structure – usually obtained by the tight
binding approximation –, simulated spectral singularities
can then be fitted with the experimental ones, and the
(L, M) indices can be deduced [9,10]. Such fitting rely
on at least one parameter, namely the hopping integral γ0

[9,10]. It is worth noting that no agreement has been found
up to now between the two techniques on the value of γ0,
that ranges between 2.5 eV and 2.9 eV.

The intrinsic difficulty in determining the chiral indices
from experimental data on an arbitrary nanotube can be
understood as follows. For structural techniques, the value
of the radius is usually known to within ±10%, and the
value of ϕ is generally known to within ±1◦ [4,5,7,8,10],
although this value can be reduced to ±0.2◦ under
favourable conditions in diffraction experiments [11,12]. It
is worth noting that due to the curvature of the SWNT,
the helicity cannot be measured directly. Instead, an ap-
parent helicity ϕapp can be defined (see Sect. 3 for a pre-
cise theoretical and experimental definition in the case of
SAED). This fact was first noticed by Qin for the SAED [7]
and described by Meunier et al. for the STM [8]. Roughly

speaking, the hexagons forming the real space honeycomb
lattice appear distorted in STM images, or equivalently, in
the reciprocal space, appear in SAED as a superposition of
two lattices which are not perfectly triangular. Top of Fig-
ure 1 displays the computed helicity and apparent helicity
values as a function of the radius, in the case of SAED. See
Section 3.1 for the detail in computing ϕapp. It is strik-
ing that the difference between both angles values can be
huge, and should be taken into account prior to any quan-
titative analysis. As an example, for hypothetical realistic
experimental values (R = 20 ± 2 nm, ϕapp = 15 ± 0.6◦),
emphasized at the bottom of Figure 1, several solutions
are possible. This remains true in the general case, unless
having small (of the order of 1nm) tube diameters (see [7]
for an SAED example or [4] for an STM one), or narrower
uncertainties thanks to high SNR [11,12]. Indeed, STM re-
sults must usually be refined by STS measurements [8,9].
However, because STM/STS is a surface technique, it is
basically not extendable to MWNT or ropes. Resonant
confocal micro-Raman spectroscopy was shown to success-
fully determine (L, M) [10] of individual SWNT without
a priori structural knowledge (except for the first estima-
tion of the diameter by Atomic Force Microscopy). This
technique is however restricted to small diameters [10]
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and, to our knowledge, was not used on individual multi-
walled nanotubes (MWNT).

On the contrary, SAED in a Transmission Electron
Microscope (TEM) is not restricted to SWNT. For exam-
ple, Amelinckx et al. [13] studied in detail the apparent
helicities of MWNT and ropes. More recently, Colomer
and coworkers [14] concentrated their study on ropes with
unique helicity, for which the apparent helicity can be un-
ambiguously measured. In a previous work [11], we also
used SAED to determine the chiral indices of both nan-
otubes inside a DWNT. This determination was compared
to an in situ transport experiment on the same DWNT in
a TEM. The successful chiral indices determination proved
the impressive accuracy of the SAED for resolving chiral
indices of arbitrary large radius (around 30 Å) MWNT.
In this previous work, we extended the original system-
atic procedure of Qin [7], from SWNT to DWNT. Qin’s
procedure allows the retrieval of the helicity from the ap-
parent helicity measurement, and, knowing the diameter
value, to determine the chiral indices in favourable cases.
In Qin’s procedure, the radius of a SWNT was measured
with High-resolution imaging (HR), although in our pre-
vious study we used the diffraction pattern itself to mea-
sure the radii of a DWNT. Nevertheless, in our previous
work [11], the discussed ambiguities on the exact value
of the chiral indices still remained for most of the inves-
tigated structures. This led us to find a more powerful
method to extract chiral indices from the diffraction pat-
tern.

The diffraction pattern intensity of a nanotube has a
discrete periodicity along the tube axis, while it oscillates
in the perpendicular direction. While the very well de-
fined discrete periodicity depends on the exact value of
(L, M), the (pseudo) periods of the oscillation are related
to the diameter(s) of the nanotube(s) under considera-
tion, as well as their mutual structural arrangement. It is
therefore obvious that a huge improvement in the struc-
tural determination accuracy of a SWNT, a MWNT or
a rope of SWNT can be gained by analysing these fea-
tures. To study the structural order and disorder in ropes
of SWNT, Henrard et al. [15] and Colomer et al. [14] used
the central oscillations of the diffraction pattern. On the
other hand, Amelinckx et al. [13] used the modification of
the periodicity of the diffraction pattern when tilting the
nanotube to retrieve the tilting angle. So far, no experi-
mental work has analysed the fine structures of the whole
diffraction pattern, nor were these fine structures used to
determine the chiral indices.

We will show that a determination of chiral indices
based on SAED measurement of radius and apparent he-
licity can be refined by semi-quantitative analysis of the
diffraction pattern. This analysis gives unambiguously the
chiral indices. It relies on an extensive comparison of ex-
perimental data with simulation made using the kinematic
diffraction theory developed by Lambin and Lucas [17].
The determination of the chiral indices can then be de-
duced for an arbitrary large nanotube, nested or not. We
give the general procedure, illustrated by an example, of
the determination by SAED of the chiral indices of the

Fig. 2. Diffraction pattern and image of the same DWNT. Top.
The diffraction pattern was taken on Imaging Plates, with an
acquisition time of 180 s, a camera length of 80 cm and a se-
lected aperture of 500 nm. The scale bar is 100 pixels. One
clearly distinguishes the layered distribution of the diffracted
intensity, as well as its oscillating behaviour. The black rect-
angle is the beam stopper, and the iris-like feature an artefact.
The Selection Aperture was not centred on the tube, in order
to avoid diffraction by nanoparticles in the vicinity. Bottom:
Image of the same DWNT. The black fringes are related to the
presence of the two walls. Notice the fringes (indicated by an
arrow) perpendicular to the tube axis, which are related to the
zigzag chains. The scale bar is approximatively 1 nm.

two tubes constituting a DWNT. We will show how it is
possible to extract this information either independently
for the two nanotubes, or in parallel. All experimental
and theoretical uncertainties will be discussed in detail.
We will discuss the fact that this method does not rely on
any fitting parameter and should apply to tube of arbi-
trary size. Most of this analysis could apply to any kind
of nanotube (SWNT, MWNT or ropes) and could be eas-
ily extended to nanotubes made up of different chemical
species.

2 Experimental results

2.1 Experimental conditions

Figure 2 presents both the diffraction pattern and the im-
age of a DWNT produced by arc-discharge [11]. The ex-
periment was performed in a JEOL 2010 F, fitted with
a Field Emission Gun (FEG), working at an acceleration
voltage of 117 keV. Working below 120 keV was found
to decrease the probability for the nanotube to be dam-
aged by knockout atom ejection. The DWNT was sus-
pended freely in the vacuum, supported on both sides by
an amorphous carbon film. The diffracting geometry is
schematized in Figure 3. An incoming electron beam par-
allel to the X axis is diffracted by a DWNT, and forms a
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Fig. 3. Scheme and notations. Top: Diffraction geometry (only
one tube is schematized here). The reference XY Z refers to
the TEM, the diffraction plane Y Z being perpendicular to the
optical axis X. The tube axis is parallel to Z′, and makes
an angle Γ with Z. In the reference frame of the nanotube,
an arbitrary atom (grey dot) is translated by Z′

0 and rotated
around the circumference by an angle Φ0. Bottom: Scheme of
the diffraction pattern of DWNT presented in Figure 2. Except
for the central line, each line can be attributed uniquely to one
or the other of the two tubes constituting the DWNT. The
first maxima (two per line) of the lines are helpful to quickly
assign each line to a tube. They form one set of two pseudo-
hexagons symmetric with respect to kZ per tube. Grey lines
and hexagons are then attributed to a first tube called tube
“A”, and black ones to the (nearly zigzag) tube “B”. Different
quantities can be defined. In the subscripts, “A or B” stands
for the type of tube, the number following denote the index of
the layer for the given tube, and “r” or “l” stands for “right”
and “left”.

diffraction pattern in the Y Z plane. The tube axis, par-
allel to Z ′, is enclosing an angle Γ with Z. Γ will be re-
ferred later as the tilting angle. Several diffraction patterns
were acquired with different acquisition times (from 4 s to
180 s) on Imaging Plates (IP) for a camera length value of
80 cm. We used the smallest available selection area aper-
ture (equivalent to 0.5 µm in the object plane), to avoid
diffraction by neighbouring catalyst or graphitic particles.
We set the condenser illumination in order to obtain the
most nearly parallel incoming beam on the DWNT, and
we then focused the intermediate lens so as to obtain the
finer details on the diffraction pattern. This ensures an
optimal sharpness of the diffraction features, at the ex-
pense of decreasing the available signal. Because for this
work we were primarly interested in the fine structures
of the diffraction pattern, we used IP in order to obtain
a signal proportional to the diffracted intensity and with
a high dynamic range. However, using standard films in-
creases the sensitivity with the drawback of losing linear-
ity. Note that experiments on smaller nanotubes with IP
and a parallel incoming beam give a very poor signal to
noise ratio, making the retrieval of the chiral indices much

harder. In this case, a balance between increasing uncer-
tainties over the diameter and helicity measurements on
one hand, and the increase of signal on the other should
be found when using a non-parallel beam and standard
films [16]. The high-resolution image was then acquired
on a CCD Gatan camera, mostly in order to check that
the tube was not damaged. Successive diffraction patterns
were acquired over an elapsed time of more than 15 mn
without any noticeable electron beam induced damages,
either on the diffraction patterns or on the images.

2.2 Image

On the image (bottom of Fig. 2), one clearly distinguishes
two pairs of black fringes, reminiscent of the projection
of the two walls of the DWNT [1]. On the bottom of the
image, one can notice a series of parallel fringes perpen-
dicular to the tube axis. This is the imaging of the zigzag
chains on one side of the DWNT [6], which occurs when
a nanotube is tilted so that the tilt angle is nearly equal
to the helicity, namely Γ ∼ ϕ. Note that in this case, the
fringes are imaged only on one side of the tube. It is worth
noting that with only a single HR image and without any
image simulation, it is impossible to determine the chiral
indices. It is even impossible to tell which of the two shells
is responsible for the appearance of the zigzag fringes.

2.3 Qualitative description of the diffraction pattern

The top of Figure 2 displays the diffraction pattern of the
same DWNT. A scheme of the diffraction pattern is shown
in Figure 3. Note that the iris-like feature, as well as the
radial stray lines, are artifacts related to the condenser
aperture.

As outlined in Figures 3, 4 sets of 6 broad spots, form-
ing 4 pseudo hexagons, 2 by 2 symmetric with respect
to the kz axis can be immediately identified. A heuristic
and qualitative point of view allows us to attribute each
pair of hexagons to the intensity diffracted by each unique
single walled nanotube forming the DWNT (see for exam-
ple [13] for a review of the different models for nanotube
diffraction). Indeed, let us assume that only the parts of
the tubes that are perpendicular to the incoming electron
beam are likely to diffract. For each tube, we can approxi-
mate these two parts by two graphene sheets, rotated with
respect to each other by an angle 2ϕ. Thus, the diffrac-
tion pattern for one nanotube would then be constituted
by the superposition of the diffraction patterns of two ro-
tated graphene sheets. The resulting first spots of such a
diffraction pattern are then forming two hexagons, rotated
by an angle 2ϕ. However, due to the finite curvature of a
nanotube, this is only very qualitatively true. First, the
“spots” are broad, which implies to clearly define where
the characteristic angles are measured. Secondly, what-
ever the definition chosen for measuring an angle on one
of these broad spots, the measure of this angle will be
different from the helicity [7]. For example, without cur-
vature, ϕ = θ3 = 30− θ1, which is clearly not the case for
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Fig. 4. Principal features of the diffraction pattern. Main
panel: An intensity profile has been extracted from two sym-
metric layer-lines, denoted LA3 and LA−3 (see Fig. 3 for def-
initions). Integration width is 11 pixels. The diffraction pat-
tern is almost symmetric with respect to the kY axis. LA−3

as also been drawn after a mirror symmetry has been applied
with respect to the kZ axis, in order to emphasize the symme-
try with respect to this axis. The resulting curve is labelled
LA−3 F lipped. The maxima are symmetric, but the back-
ground is not. Inset: Intensity profile perpendicular to LA3,
with an integration width of 7 pixels. The position of the max-
imum, clearly above the noise, is independent of the integration
width, emphasizing the experimental accuracy available in de-
termining the layer-line positions.

real nanotubes (see the comparison of ϕapp = 30−θ1 with
ϕ in Fig. 1). Nevertheless, such a simple model allows us
to have a first idea of the contribution of the two tubes,
arbitrarily noted A and B from now on.

An accurate description of the diffraction pattern can
be done as follows [7,13,17]. The intensity is distributed
on a discrete set of lines parallel to kY and symmetric
with respect to the central line. This line, that we will
call hereafter the equatorial line, is noted L0 in Figure 3.
This comes from the fact that a nanotube has a transla-
tional periodicity along its axis, and none in the perpen-
dicular direction. Following [17], we will call these lines
“layer-lines”. As we have seen, except for the equatorial
line, each layer-line intensity depends upon one and only
one of the two tubes constituting the DWNT, except if
their periodicities are commensurable. The layer-lines will
then be labelled L(A or B),±i,(r or l). A or B refers to the
corresponding nanotube, ±i to the position with respect
to the equatorial line, and r or l refers to the right or
left of the diffraction pattern, when needed. In Figure 3,
the position of these lines with respect to the equato-
rial one are noted kz,i. Similarly, the distance from the
000∗ spot to a given maximum in intensity will be la-
belled G(A or B),±i,(r or l), and the corresponding angle,
θ(A or B),±i,(r or l). The central line oscillates with two pe-
riods, while the others display two broad maxima, sym-
metric with respect to kZ , and followed by weaker oscil-
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Fig. 5. Intensity profile of the equatorial line. The central
spot has been skipped for clarity. As for the other layers, one
notices a small asymmetry of the background. “E”, 2π times
the inverse of half the difference of the tube diameters and
“e”, 2π the inverse of the mean tube diameter (see inset for
real-space representation of these quantities) can be extracted.

lations, as seen directly on the diffraction pattern of Fig-
ure 2.

In order to quantitatively analyse the diffracted inten-
sities, we extracted intensity profiles along a given line,
using the profile tools of Digital Micrograph from GATAN
inc. For a given pixel along the line, the intensity is aver-
aged over a certain width perpendicular to the profile line.
The width is chosen as to maximise the signal to noise ra-
tio, and is usually in the range between 4 to 10 pixels.
This is exemplified in Figures 4 and 5, in which the inten-
sities along the equatorial line and two symmetric lines
are respectively displayed. Thanks to the use of IP, the
intensity in not saturated for the equatorial line, and the
dynamic range is good enough to measure both the equa-
torial line and the other layers. Note the high number of
visible oscillations on layer-lines L±3 for both tubes. The
number of oscillations is less on the other layer-lines, typ-
ically 3 or 4. The symmetry with respect to kZ involves
not only the position of the intensity maxima, but also
their value, apart from an asymmetric background (seen
on every line). This asymmetric background results from
the fact that the DWNT was slightly misaligned with re-
spect to the SA aperture in order to avoid diffraction from
neighbouring particles. The symmetry of the intensities
on two layer-lines symmetric with respect to the kY axis
is emphasized in Figure 4 (see the comparison of curves
“LA3” and “LA−3”).

As we will see in the next paragraph, kz,i, Gi and θi

(see Fig. 3), and e and E (see Fig. 5) will be used to de-
duce the structure of the nanotubes. The angles θi will be
related to the helicity of each tubes, and e and E to the
inverse of the mean diameters and the intertube distance.
It is then important to comment on the accuracy in mea-
suring these quantities on the diffraction pattern, prior to
any assumptions.

The displayed area of the IP in Figure 2 is about
2000 pixels in width and in height. The positions of the
layers (the quantities “kz,i” in Fig. 3) are very well defined.
The inset of Figure 4 displays the diffracted intensity
perpendicular to a line. Though the Full Half Width of
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this profile is of the order of 10 pixels, the position of its
maximum does not depend either on the averaging width,
or on the precise position of the profile line, provided it is
perpendicular to the intensity layer-line under considera-
tion. This means that the measure of kz,i can be performed
with an accuracy of ±1 pixel, which represents a precision
of ±2/1000 for L±3. Among all the measured distances,
it is by far the most precise. For a given layer-line i, let
kymax,i be the position of the first maximum. We define
then,

Gi =
√

k2
ymax,i + k2

z,i (3)

and
θi = arctan(kz,i/kymax,i). (4)

The accuracy in measuring these two quantities will be
limited mainly by the accuracy in determining kymax,i. An
accuracy of ±5 pixels on kymax,i is a pessimistic precision
that can be easily achieved. Then, the accuracy of Gi will
be on the same order in pixels, and on the order of ±1%.
Note that the larger kz,i/kymax,i, the smaller is the error
on Gi. This means that it is better to measure a distance
on layers L±3 than on layers L±1. The corresponding er-
rors in θi are typically ±0.3◦ to ±0.6◦. The accuracy of
θi is increased when measuring angles for which kymax,i

is large as compared to kz,i. This means that, contrary
to the distance determination, the angle determination is
better on layers L±1. Errors made in determining e arise
mainly from intrinsic noise during acquisition. It can be
decreased down to ±1.25 pixels by averaging over three
maxima. This represents a relative error of ±5%, which is
the worst accuracy of all the important measured quan-
tities. Finally, the error in determining E comes mainly
from the detection of the maxima, rapidly oscillating at
the period e, in between which this quantity is measured.
By allowing an error of ±e/2 on the position of these max-
ima, and measuring directly 4E (see Fig. 5), the errors is
±e/4, which represents only around ±2% of E.

3 Analysis

3.1 Theory

In order to fully interpret the diffraction pattern, we will
make use of the theory developed by Lambin and co-
workers [13,17] for the general case of a SWNT, a MWNT
or a rope of tubes, that we will apply specifically to the
case of a DWNT. Note that a kinematic theory is fully
justified for such thin objects like the DWNT under con-
sideration. We will use the notations found in [17]. It is
convenient to describe the nanotube in a slightly different
manner from that in the introduction, in order to include
explicitly the handness (σ = ±1) of the nanotube. In par-
ticular, a SWNT with M < 0 is equivalent to the one
with (L + M,−M) but with the opposite handness. Any
nanotube can then be described easily from the knowledge
of (L, M) and σ. Let C be the circumference of the nan-
otube, and T the translational vector of the SWNT [18].
We will first describe the reciprocal space of a SWNT

and then that of a DWNT. Because in electron diffraction
the Ewald sphere is almost flat, the salient properties of
the diffraction pattern can be deduced from the recipro-
cal space in a framework where the diffraction pattern is
a simple plane containing k′

z [7].
Let k be the wave-vector transfer in the geometry

described in Figure 3, k⊥ the projection of k in the
X ′Y ′ plane and φk the azimuth angle of k⊥ in the X ′Y ′
plane. Then, for a SWNT (L, M) of given handness σ, the
diffracted amplitude Ass(k) reads [17]:

Ass(k) =
4πC

3
√

3dcc

+∞∑
l=−∞

Fl(k)δ[kz′ − (2π/T )l] (5)

with the diffracted amplitude on a layer-line l reading:

Fl(k) = exp(i2πz′0l/T )

×
+∞∑

m,s=−∞
JsL′−mM ′(k⊥R) exp i

{
(sL′ − mM ′)

×
[
(φk − φ′

0)σ +
π

2

]}
fC(k){1 + exp i2π[(s + 2m)/3]}

× δ

(
l,

s(L′ − 2M ′)
N

+
m(L′ + M ′)

N

)
(6)

with L′ = L + 1/2(1 − σ)|M | and M ′ = σ|M |. z′0 and φ′
0

are respectively the shift distance along the Z ′ axis and
the rotation angle around this axis for an arbitrary carbon
atom of the nanotube (see Fig. 3). Jn(x) is the first Bessel
function of order n and fC(k) the atomic form factor of
carbon.

For a DWNT, the diffracted amplitude will be just
the sum of that of the two constituting tubes. Let us
first describe the reciprocal space of a SWNT. The am-
plitude is non zero only on successive planes of equation
kz′ = (2π/T )l where the allowed layers l for a given tube
are determined by the extinction rules (see [7] for a geo-
metrical description of them):

l =
s(L′ − 2M ′)

N
+

m(L′ + M ′)
N

· (7)

For a given l and for a given direction of the k⊥
vector (e.g. for a fixed value of φk) the amplitude will
be proportional to a sum of Bessel functions of order
n = sL′ − mM ′, the values of which are determined
through equation (7), weighted by a phase factor that
mainly depends on (φk−φ′

0)σ. Note that for l = 0, n = 0 is
always a trivial solution of equation (7), while in the gen-
eral case, n depends on L, M (but not on the handness)
in an intricate way. Forgetting for clarity the monotoni-
cally decreasing behaviour of the atomic form factor, we
can concentrate on the behaviour of the Bessel functions.
The behaviour of a Jn(k⊥R) function can be schematized
as follows: it has a first maximum at k⊥ ∼ n/R, followed
by decreasing pseudo-oscillations of period ≈ 2π/R. This
means that a given nth order Bessel function will con-
tribute only from k⊥ � n/R. As a matter of fact, ex-
cept for the highly symmetric case of zigzag and armchair
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tubes, there’s only one Bessel function contributing to a
given layer l, at least for reciprocal space distances up to
k⊥ ∼ 2×2π/dzz, where dzz is the distance between zigzag
chains. One practical consequence is that, for a SWNT,
all the phase factors in equation (5) factorize, and so the
diffracted intensity on a given layer l, Iss,l(k) = |Ass,l(k)|2
takes a very simple form:

Iss,l(k) ∝ |Jn(k⊥R)fC(k)|2. (8)

This means that all information on the atoms absolute
positions (the knowledge of z′0 and φ′

0) and the handness
is not available in this case. On the contrary, the oscillation
pseudo-period will give us extra information on the radius
of the nanotube.

The symmetry of the reciprocal space can be easily
deduced: making the inversion kz′ → −kz′ , i.e. l → −l,
implies from equation (7) (s, m) → (−s,−m) and then
n → −n. Since Jn(k⊥R) = J−n(k⊥R), this means that
the reciprocal space of a SWNT is symmetric with respect
to the plane (X, Y ). Also, because Jn(k⊥R) = Jn(−k⊥R),
the reciprocal space is also symmetric with respect to the
kx = ky = 0 line. Although we derived these two symme-
tries from (8), they remain true in the general case [13].
Also, for a chiral tube, the reciprocal space is invariant
by rotation around kz [13]. Taking into account the cur-
vature of the Ewald sphere does not change substantially
this analysis for chiral tubes [13], but the symmetry with
respect to the central line will be slightly broken in case
where the nanotube is tilted, the effects becoming notice-
able typically for tilt angles larger than 10◦. This is in
agreement with the symmetry observed on the experi-
mental diffraction pattern (Fig. 2) and the intensity on
a layer-line, Figures 4 and 5.

For a DWNT nanotube, made up of a tube A and tube
B, the description of the reciprocal space can be divided
in two parts. First, for kz′ �= 0, except if tube A and B
are commensurate tubes, lA/TA �= lB/TB for any lA, lB.
Then, tube A and B do not contribute to the same layers,
and the intensity takes the simple form of equation (8),
with n depending on the layer l under consideration and
R being RA or RB. Secondly, when kz = 0, the solution
l = 0 is valid for both tubes. The diffracted amplitude Adw

will be the sum of that of tube A and B. Assuming that
only the Bessel function of order n = 0 is contributing to
that layer, the diffracted intensity reads:

Idw,0(k) ∝ |CAJ0(k⊥RA) + CBJ0(k⊥RA)|2

×
(

8π

3
√

3dcc

fC(k)
)2

. (9)

In this case also, although contribution of both nanotubes
interfere, all effects of the relative shift along the tubes
axis, namely (z′0,A, z′0,B), relative rotation (φ′

0,A, φ′
0,B) and

handness have disappeared as in the case of equation (8).
A useful limit can be found by using the asymptotic for-
mula for the Bessel function [13], for large enough k⊥.
“Large enough” means reciprocal distances larger than
2π
dzz

[13], i.e. of the order of G. In this case, we can ex-
pand the formula equation (9) for large values of the wave

vector and in power of the adimensional parameter δR/R:

Idw,0(k) ∼ f2
C(k) ×

{(
cos2

(
k⊥R − π

4

)
cos2(k⊥δR)

+
1
4

δR

R
sin

(
2k⊥R − π

2

)
sin(2k⊥δR) + o

(
δR2

R
2

)) }
·

(10)

Here, δR = |RA−RB |
2 and R = RA+RB

2 .
As previously noted in [11], the first part of this ex-

pression is similar to that extracted from a simple model
where the main contribution to the equatorial line comes
from the Young-slit-like diffraction by the generator lines
of the two tubes. The intensity along the equatorial line
oscillates with a period of e = 2π/2R, within an oscilla-
tory envelope of period E = 2π/2δR. This appears on the
experimental diffraction pattern (Fig. 2) as well as in the
intensity profile of Figure 5. Note that the second part of
the right term of equation (10), of order δR

R
, also contains

a multiplication of two functions with the same periods as
the first one.

Let us finish the theoretical description of the
diffracted pattern by examining the effect of the tilting
angle Γ . It will increase the distances kz,i of the layer-
lines with respect to the equatorial line (see Fig. 3):

kz,i(Γ ) = kz,i(Γ = 0)/ cos(Γ ). (11)

Also, as already discussed, due to the finite curvature
of the Ewald sphere, a tilting angle will change slightly
the diffracted intensity along a layer-line, the effect being
possibly assymetric with respect to the central line.

3.2 General procedure

We come now to our main concern: given an experimen-
tal diffraction pattern with its experimental uncertainties,
how can we determine the chiral indices? And what is the
level of confidence in this determination?

We will propose a general method to tackle these ques-
tions. First of all, we will discuss the critical questions of
the calibration of the diffraction pattern, identifying the
measured quantities depending or not on it, and the addi-
tional uncertainties arising from badly calibrated diffrac-
tion patterns (Sect. 3.2.1). Because the contribution of
each tube inside a DWNT generally decouples except for
L0, we will be able to determine independently their chi-
ral indices. With this objective, we will first determine the
possible values for the diameters and the corresponding
uncertainties in Section 3.2.2. Similarly, we will determine
the apparent helicities in Section 3.2.3. In Section 3.2.4,
using the database in Figure 1, we will determine for each
tube independently the possible chiral indices, given the
diameter, helicity and related uncertainties. Then, among
all the theoretical solutions, we will use extra information,
namely the comparison of the experimental layer-line po-
sitions kz,i to their theoretical counterparts, and the fit
of the layer-lines intensity with their theoretical counter-
part to discard all but one solution for each tube indepen-
dently. Gathering the solution for tube A and tube B, it
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would be then interesting to confirm this unique solution
(LA, MA), (LB, MB) by an independent measurement. On
the equatorial line the contribution of the two tubes in-
terfere. We will show in Section 3.2.5 how it is possible to
determine directly the chiral indices of both tubes at the
same time, and that only one solution fits the experimen-
tal data. This solution will prove to be exactly the same
solution as deduced from the preceding analysis.

3.2.1 Calibration

As explained before, the calibration of the diffraction pat-
tern (expressed in units of rad Å

−1
/pixel) depends on the

experimental settings for each experiment. It is in princi-
ple possible to achieve a calibration with a precision bet-
ter than 1% using a known standard (polycrystalline gold
for example). This requires recording the diffraction pat-
tern of the standard under exactly the same conditions
as the nanotube of interest. Although this can be done in
a dedicated experiment, it is beyond the scope of many
experiments. For example, during in situ transport mea-
surements, it is unlikely to have an available standard near
the nanotube of interest. Also, the nanotube can be highly
defocused with respect to this standard.

Moreover, given an absolute calibration, the determi-
nation of the diameters (see Sect. 3.2.2) along a given
layer-line (Sect. 3.2.4) should depend on the exact value
of the carbon-carbon distance dCC , that, depending on
the authors, ranges between 1.42 and 1.44 Å [15,18]. It is
then obvious that a standard calibration procedure, inde-
pendent of dcc should be useful.

First, let us note that the measure of the angles θ does
not depend on the calibration. Also, for a given nanotube,
the layer-line ratios kz,i/kz,j do not depend on the cali-
bration. Nevertheless, the measured θ do depend on the
tilting angle Γ , which is not the case for the layer-line po-
sitions ratii. Noticing that the measurement error on kz

is of the order of 0.1%, kz,i/kz,j should be the most sen-
sitive experimental quantity that can be compared to the
theoretical one.

Second, we can accurately calibrate the diffraction pat-
tern, given the measure, on the same diffraction pattern,
of a distance theoretically proportional to 1/dcc. Indeed,
the intensity along a layer line (see Eq. (8)) is essentially
dependent on the adimensional parameter k⊥R (fC(k) is
a slowly varying function). Then, as k⊥ ∼ 1/dcc, we can
easily measure R/dcc which does not depend either on dcc,
or on the exact value of the acceleration voltage. For the
sake of simplicity, all distances (real-space and reciprocal-
space) will be given assuming dcc = 1.44 Å, but it should
be kept in mind that only adimensional parameters like

R/dcc =
√

3(L2 + M2 + LM)/2π (12)

are really measured.
Using G (see Sect. 2.3) as a calibration length is a

good starting point, because in the naive model of the two
diffracted graphene sheets, G = 2π

dzz
. However, three kinds

of errors can arise when calibrating the diffraction pat-
tern with G. First, the intrinsic measurement error on G
(the error in pixels) is of the order of ±1% (see Sect. 2.3).
This error cannot be decreased, and for a better calibra-
tion we could use other characteristic distances, like kz,i

(see Sect. 3.2.4). Secondly, due to the curvature effect, G
should be reexpressed

G = τ(L, M, i) × 2π/dzz. (13)

The factor τ , which can be as high as 1.05, depends on
the particular layer on which the measurement is done,
and also on the chiral indices of the nanotube. However, τ
is theoretically known, and this error can be discarded in
a second step (see Sect. 3.2.4). Finally, G depends on the
tilting angle, generally unknown. Because the nanotube
lies horizontally on the carbon grid, we guessed that Γ �
6◦. This induces an additional error less than 1/ cos(Γ =
6◦) ∼ 1%. For higher tilt values, the influence increases
quickly. For example, 10◦ < Γ < 30◦ induce a relative
change of the calibration between 1.5% and 15%. In this
case, an iterative procedure should be used [7].

3.2.2 Measurement of diameters

As explicitly given in equation (10), the mean diame-
ter and inter-radius distance can be deduced from the
measurement of the quantity e and E (see Fig. 5). It
is important to note that these quantities must be mea-
sured approximately at wave vectors superior or equals
to 2π/dzz, in order for equation (10) to hold. The guess
calibration is done assuming GB3 = 2π/dzz. Taking into
account the intrinsic errors on the measurement of e and E
discussed in Section 2.3, the intrinsic error on GB3, and
the estimated error due to the curvature effect (in this
case, ±1%) and the tilt (in this case, ±1%), we find:
D = 37.89 ± 3.5 Å and δD = 3.79 ± 0.19 Å. We can then
deduce the inner and outer diameters. Let’s call D− and
D+ the inner and outer diameters. D− = 34.10 ± 4.2 Å
and D− = 41.68± 4.2 Å. It is worth noting that the very
poor uncertainties (around 12%) on both diameters are
clearly overestimated. First, the uncertainty on the cal-
ibration length can be decreased, by using a less noisy
quantity (like kz,i) and by recalibrating this length on a
known theoretical length (see Sect. 3.2.4). Second, the ex-
periment gives directly δD, within errors. Thus, all combi-
nations such as (D+ −D−)/2 �= δD (within errors) would
be filtered out. However, for the sake of proving the amaz-
ing resolution of the diffraction analysis, we will begin with
such huge uncertainties.

3.2.3 Measurement of helicity

Apparent helicities are measured on the θ1 angles (ϕapp =
30 − θ1), because, compared to θ2 and θ3, they are less
sensitive to both the uncertainties due to difficulties in
measuring the maxima on a given layer-line and to the
tilting angle Γ . An uncertainty of ±0.3◦ due to the un-
known tilting angle adds to the intrinsic one discussed in
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Section 2, giving a total uncertainty of ±0.6◦. These val-
ues can be refined, especially when the maxima are bet-
ter defined, to a value of about ±0.2◦. However, still to
prove the efficiency of the present methods, we will not
try to refine these values. The experimental values are
then θA,1 = 16.34 ± 0.65◦ (ϕapp,A,1 = 13.66 ± 0.65◦) and
θB,1 = 27.67± 0.65◦ (ϕapp,B,1 = 2.33 ± 0.65◦).

3.2.4 Determination of possible solutions

For a given θ1 (or equivalently ϕapp), there are two possi-
ble diameter ranges, namely D+± uncertainties and D−±
uncertainties. We computed all possible couples of diam-
eters and θ1 for 1 � L � 100 and 0 � M � L, and
stored the result in a database (see Fig. 1). This database
was constructed with a C++ adaptation of the program
DIFFRACT from Ph. Lambin, which uses the exact the-
ory developed in [17]. For each tube, we compared the val-
ues of θ1 and the values of D+, D− within uncertainties,
to the theoretical ones, extracted from the database. We
obtained, for each tube, about 10 solutions per diameter
range. We then made a simulation of the layer-lines inten-
sity for all the theoretical solutions. Simulations were also
performed with a C++ adaptation of DIFFRACT [19].
Before analysing in detail both tubes, it is important to
note that, for each tube, only one diameter range (i.e.
either D+ or D− plus uncertainties) is possible. Indeed,
a simple eye-checking allows us to eliminate solutions for
which the pseudo-periods of the theoretical results do not
match, even approximately, the experimental ones. This
discrepancy between the experimental data and the theo-
retical one for a particular diameter range arise from the
fact that these pseudo-periods are inversely proportional
to 2π/D. This is illustrated in Figure 6 for Tube A and
Figure 7 for Tube B, which compares respectively the ex-
perimental profiles of LA,3l and LB,−3r with their theo-
retical counterparts. We can then identify unambiguously
tube A to be the outer one and tube B to be the inner
one. Let us now discuss the remaining solutions for each
tube separately.

– Tube A.
We first calibrate the diffraction pattern with G3,A =
2π/dzz. Within the described uncertainties, we found
12 solutions. As previously described in Section 3.2.1,
due to the curvature effect, G3,A = 2π/dzzτ . For all
theoretical solutions, it was found that τ = 1.0076 ±
0.1%. It is then easy to recalibrate the diffraction pat-
tern taking into account this correction, and we find
the calibration to be 5.9791 × 10−3 rd−1Å−1 pixel−1.
The only remaining errors on the calibration are then
due to intrinsic measurement errors and tilt, and these
should not exceed 2%.

To find the right solution, we systematically com-
pute different quantities, summarized in Table 1. Af-
ter the chiral indices, the angles θi, the correspond-
ing Bessel functions orders, we give the different ratios
between the layer-lines positions, divided by the cor-
responding experimental values. These quantities do
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Fig. 6. Experimental and theoretical diffracted intensity for
layer-line LA−3l. Bottom panel: Experimental result together
with simulation for the (43,13) and the (46,14) tubes, which
correspond to the best solutions regarding the layer-line po-
sition ratio. By simple visual comparison, the latter has how-
ever to be discarded. Top panel: Simulation for (44,13), (42,13)
and (37,11). This last solution would be possible only if the A
tube would have been the internal one. A simple visual compar-
ison of the distances between maxima between this simulation
and the experimental data is enough to discard the possibility
of tube A being the inner one.
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layer-line LB−3r . Bottom panel: Experimental result together
with simulation for the (41,1) and the (40,1) tube. Although
the two solutions are visually very close, (41,1) is the best
numerically fitting solution. Top panel: Simulation for (42,1)
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of the first maxima of this simulation with respect to that of
the experimental one is related to the fact that the first Bessel
function contributing to the intensity is of order 2, while that
of the experimental one is of order 1.
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Table 1. Some of the possible structures for tube A. Only the best and worst solutions are displayed. The chiral indices are
given, together with the radius and helicity. For each of the 3 first layer-lines, characteristic angles, first contributing Bessel
function order, normalized ratios as well as dilatation are given. The (43,13) and (46,14) solution offer the best agreement with
experiment considering the layer position ratios. (46,14) should be discarded because of the strong dilation needed to fit the
intensity on the layers. Angles are given in units of degrees and radii in units of Å, and layer position ratios are normalized to
their experimental counterparts.

(l, m) R ϕ θ1 (ϕapp) θ2 θ3 n1 n2 n3 kz2/kz1 kz3/kz1 kz3/kz2 a1 a2 a3

41 13 19.4 13.3 15.9 (14.1) 41.5 74.8 –54 41 –13 0.966 0.979 1.01 1.0522 1.0351 1.0442

42 13 19.8 13.1 16.1 (13.9) 41.3 75.1 –55 42 –13 0.985 0.993 1.008 1.0108 1.0205 1.0243

43 13 20.2 12.8 16.4 (13.6) 41.1 75.4 –56 43 –13 1.004 1.0069 1.0023 1.0156 1.0076 1.0042

44 13 20.5 12.6 16.6 (13.4) 40.8 75.7 –57 44 –13 1.023 1.02 0.998 0.99082 0.99432 0.98463

45 13 20.9 12.3 16.9 (13.1) 40.6 75.9 –58 45 –13 1.04 1.03 0.991 0.98422 0.98199 0.96705

46 14 21.6 12.9 16.3 (13.7) 41.2 75.4 –60 46 –14 0.999 1.00312 1.0039 0.96346 0.95792 0.94975

48 14 22.4 12.4 16.8 (13.2) 40.8 75.9 –62 48 –14 1.03 1.03 0.994 0.93779 0.93915 0.91815

not depend on the calibration, nor on the tilting angle
nor on a potential twist of the nanotube. Moreover,
because the kz,i are experimentally known with the
precision of one pixel, this is the most precise criterion
to discriminate between solutions. The best solutions,
i.e. those for which kz,i/kz,j|exp

kz,i/kz,j |theo
are the nearest to 1 for

all pairs of layer-lines (i, j) are (43, 13) and (46, 14).
(42, 12) is the next best solution. However, contrary to
the first two ones kz,i/kz,j|exp

kz,i/kz,j |theo
has a variation of 2.2%

for different values of (i, j). For (43,13) and (46,14) this
variation drops down to 0.4%. Such an error could be
explained by apparatus imperfection (effect of spheri-
cal aberration of the imaging lens on the diffraction
pattern, remaining astigmatism in the intermediate
lens...). This is not the case for a 2.2% variation, and
thus (42, 12) should be discarded.

However, two solutions still remain. By fitting the
experimental diffraction pattern with the simulations,
one can easily disentangle them. Our goal is to fit the
positions of the maxima on a given layer, rather than
to fit exactly the diffracted intensity. This latter task
would require taking into account more parameters,
in particular the broadening of the diffracted intensity
by thermal excitation and by non-elastic losses. We
thus fitted the experimental intensity Ii,exp(ky) with
the following trial function AiIi,L,M (aiky + ci) + di.
Ii,L,M is the theoretical intensity for layer i for tube
(L, M), and {Ai, ai, ci, di} are some fitting coefficients.
The important parameter is ai, which gives the dilata-
tion needed to adjust the theoretical profile to the ex-
perimental one. ai should be as close as possible to 1.
Deviation from this value could be explained by the
remaining 2% error in the calibration. Theoretical so-
lutions for which ai < 0.98 or ai > 1.02 should then be
discarded. Such a deviation means that the radius is
too big, or too small to fit the data. We tried different
models for the trial function, including convolution by
a Gaussian function and removal of the background
with different models, and we checked that the value
of ai was not affected by the particular model or a

particular choice of the fitting interval. The last three
columns of the Table 1 give the values of ai. It is obvi-
ous that the solution (46, 14) should be discarded: the
radius is too big. As for the preceding analysis on the
layer ratio, (43, 13) is also the best solution regarding
this last criterion, together with the solution (44,13).
This latter nanotube was discarded due to the pre-
ceding criterion based on the layer-line position ratios.
Note that the solution (42, 12) gives rise to ai values
too large to fit the data.

– Tube B.
We applied the same procedure to the tube B. In
this case, we directly calibrated the diffracted pattern
with the kz,3 distance, which should be nearly equal
to 2π/dcc, because tube B has a nearly zigzag form.
The resulting calibration is 5.99705× 10−3 rd−1 Å−1.
By comparison with the database, we found 7 solu-
tions. For all these solutions kz,3 = 1 within 0.01 %.
Thus, no re-calibration is needed, contrary to the case
of Tube A. Table 2 gives the result of the analysis on
tube B. It is worth noting that this time, it is almost
impossible to disentangle the different solutions with
the layer-line position ratio, which are all equals to
1 one to within 0.2%! Note for consistency that the
computed ratios for solutions for which tube B would
have been the external one are in disagreement with
the experimental ones.

Comparing the ai coefficients in Table 2 is sufficient
to discard all solutions but (41, 1). (40, 1) and (42, 1)
are the two next best solutions, but their ai coefficients
are too large to fit the data. Compared to the tube
B, the selection criterion based on ai is much more
straightforward, and the ai values are more invariant
on i for a given tube.

From this analysis, the result is that (41, 1)@(43, 13) is
the only solution to index the experimental tube structure.
For that determination to be true, it was guessed that Γ <
6◦. This is in total agreement with the imaging of fringes
perpendicular to the tube axis in the image in Figure 2.
They can be attributed to the zigzag chains of tube B, with
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Table 2. Some of the possible structures for tube B. See Table 1 for details. Note that the layer ratios are all very close and
cannot help to distinguish between solutions. On the other hand, the dilatation factors unambiguously allow to distinguish
(41,1). Angles are given in units of degrees and radii in units of Å, and layer position ratios are normalized to their experimental
counterparts.

(l, m) Radius ϕ θ1 (ϕapp) θ2 θ3 n1 n2 n3 kz2/kz1 kz3/kz1 kz3/kz2 a1 a2 a3

39 1 15.7 1.26 27.2 (2.76) 29.6 87.7 –40 39 –1 0.995 0.996 1 1.035 1.048 1.05

40 1 16.1 1.22 27.3 (2.71) 29.6 87.8 –41 40 –1 0.997 0.997 1 1.016 1.0193 1.023

41 1 16.5 1.2 27.3 (2.66) 29.6 87.8 –42 41 –1 0.999 0.998 0.999 1.0006 1.009 0.998

42 1 16.9 1.17 27.4 (2.61) 29.6 87.9 –43 42 –1 1 0.999 0.999 0.99007 0.99455 0.978

43 1 17.3 1.14 27.4 (2.57) 29.6 88 –44 43 –1 1 1 0.998 0.97 0.97 0.954

44 1 17.7 1.11 27.5 (2.52) 29.6 88 –45 44 –1 1 1 0.997 0.954 0.956 0.934

45 1 18.1 1.09 27.5 (2.48) 29.6 88 –46 45 –1 1.01 1 0.996 0.94 0.94 0.913

Table 3. Some of the possible structures for TubeB@TubeA.
a is the dilatation coefficient.

(l, m) @(l, m) a

(40,1) @(42,13) 1.0251

(41,1) @(43,13) 1.00418

(42,1) @(44,13) 0.9843

(43,1) @(45,13) 0.96713

Γ = ϕB ± 5◦ [6]. Let us now end coherently our analysis
with an analysis of layer L0, where the contributions of
the two tubes interfere.

3.2.5 Comparison to solutions extracted from L0 layer

The calibrations of tube A and B differ only by ∼ 0.3%.
Because the two calibrations were done totally indepen-
dently, this validates our calibration procedure. With this
new calibration, we re-compute the values of D and δD,
as well as the corresponding uncertainties, of the or-
der of ±6% and ±4% respectively). By comparison with
the database, we searched for the pairs of tubes corre-
sponding to such mean diameters and intertube distance,
given the measured θ1’s, as already described in [11].
7 solutions were found (four of them are summarized in
Tab. 3). Among them, we retrieve independently the solu-
tions (41,1)@(43,13), (40,1)@(42,13) and (42,1)@(44,13),
for which the inner and outer tubes were among the best
solutions in the previous analysis. The top of Figure 8 dis-
plays these 3 solutions over a short range of wave vectors.
Almost all solutions can be discarded by eye (see the solu-
tion (42,1)@(44,13) for example). Also, we apply the same
fitting procedure to L0 as for the other layers. The dilata-
tion factor a is given for some solutions in Table 3. The
best fitting solution, plotted on a large wave vector scale
in Figure 8, is (41,1)@(43,13). We thus found indepen-
dently, the same solution as for the separate tube A and
tube B analysis. Note that we certainly overestimated the
errors on D and δD: (41,1)@(43,13) is the only remaining
solution extracted from the database when decreasing ar-
bitrarily the uncertainties down to 3.5% for D and down
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Fig. 8. Experimental and theoretical diffracted intensity for
layer-line l = 0. The calibration of the abscissa is done with
the same calibration as used for Tube B. Bottom panel: Ex-
perimental result together with simulation of the best solu-
tion (41,1)@(43,13) tube. Top panel: Experimental result and
simulation with the three possible solutions (41,1)@(43,13),
(40,1)@(42,13) and (42,1)@(44,13) over a short range of wave
vectors. (41,1)@(43,13) fits the best.

to 2% for δD. This means that a simple comparison of
the experimental θ1 and D and δD with their theoreti-
cal counterparts could be enough in case of high signal to
noise ratio, provided the calibration procedure is done as
described in the present study.

4 Discussion

In the preceding section, we showed how to determine the
chiral indices of both nanotubes inside a DWNT. Let us
now discuss the hypothesis beyond this affirmation. We
will then discuss the advantage of the above methods, and
finally its limitations and drawbacks.
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4.1 Underlying hypothesis

The hypotheses underlying this analysis are very weak.
The nanotube structure only needs to be well modelised by
a sheet of graphene wrapped onto a cylinder. This means
that the different relations between distances are true (the
relation between the zigzag distance to the carbon-carbon
distance, dzz = 1.5dcc for example). With this in mind, the
hexagons of the honeycomb lattice must not be distorted
(in real space, of course) or, in other words, dcc must be
constant over the whole nanotube. Also, a flattening of the
nanotube due to interaction with the substrate [20] is un-
likely to happen for a suspended structure. Note that these
hypothesis is however underlying all forms of chiral indices
determination, either implicitly (if the determination is
based upon electronic structure [8,10]) or explicitly (real-
space determination by STM [4] or phase-reconstructed
HR (PRHR) [6]). Also, the presented technique is robust
with respect to a possible twist of the nanotube. Indeed,
the layer position ratios are not dependent on a twist (be-
cause a twist is in an homothetic operation along the tube
axis), and we saw that in tubes like tube A, a selection of
solutions based on these ratii is very robust.

The interest of the described method is that it is al-
most independent of any fitting parameter. Because the
calibration of the diffraction pattern is done directly on
itself, the chiral indices can be extracted without know-
ing the value of dcc. This is different from the above-
mentioned techniques. The real-space methods do depend
of the knowledge of dcc, although auto-calibration could be
in principle be done in PRHR. In the case of techniques,
like STS or Raman spectroscopy, where the determina-
tion of the chiral indices depends upon a band-structure
model, the analysis depends also on a second parameter,
namely the value of the hopping integral γ0. It is worth
noting that, if the value of γ0 is consistent within a tech-
nique, there’s no agreement between the fitted values of
γ0 between the 2 kinds of experiments (STS and Raman),
although the same tight-binding model is used to fit the
data. This is not the case here.

However, there are some drawbacks in this method.
The handness could not be extracted from the diffrac-
tion solely. Similarly, for chiral tubes, the absolute shift
z0 or rotating angle φ0 cannot be measured. These two
impossibilities are related to the fact that neither the in-
tensity of the equatorial line (Eq. (9)) nor that of the other
lines (Eq. (8)) are dependent on σ, z0 or φ0. The situation
would be different for achiral tubes, for which more than
one Bessel function, weighted by a phase factor generally
depending on σ, z0 or φ0, contribute to the diffracted in-
tensity. The handness could however be measured in the
general case, provided we could access the HR image of
the tube, and we could experimentally change Γ . Indeed,
when the zigzag chains are approximatively parallel to the
electron beam, the contrast becomes periodic along the di-
rection of the tube axis, on one of the two sides (see Fig. 2).
The knowledge of the sign (unknown in the present exper-
iment) of the tilt would allow a retrieval of the handness.
Of course, the accuracy in determining the chiral indices,
reflected for example in the precision achievable in deter-

mining the layer-line position ratii, comes from the fact
that the diffracted signal comes from a wide region (about
500 nm) of the nanotube, i.e., the diffraction is non-local.
No local information can be then gained. Nevertheless, lo-
cal information on defects, for example, can be obtained
by HR on the very same NT.

4.2 Domain of applicability of the method

Finally, the domain of applicability of the present method
can be extended to other types of nanotubes or group of
nanotubes. It is of course possible to apply such a tech-
nique to SWNT. Given a radius estimated at 12% and
a measured helicity, we proved it by analysing separately
the two tubes in Section 3.2.4. However, in this case, an
estimation of the radius is not as straightforward as for
the DWNT, because the intensity on the equatorial line
falls experimentally to zero before it is possible to con-
veniently approximate a Bessel function by a cosine. In
that case, the radius could be first estimated by HR, for
example, and its value crosschecked by fitting the equato-
rial line with the appropriate law [12]. One of the advan-
tages of the electron diffraction technique is that it allows,
thanks to its precision, a deduction of chiral indices even
for large radius (i.e., up to 40Å) (contrary to what is pos-
sible with Raman spectroscopy, for example). Also, it is
not restricted to surface analysis (like STM/STS) or de-
pendent on the influence on the tube by its environment,
thus can probe MWNT and ropes. Concerning MWNT,
there’s no reason why we could not extend our method
to them. Thanks to the diameter differences between con-
stituant tubes, each layer-line could be easily attributed
solely to one tube, provided the tubes periods along the
axis are not commensurate. This is possible in practice
only when the number of walls is small. Then, the analysis
of the non-equatorial layers follows exactly Sections 3.2.2,
3.2.3 and 3.2.4. Crosschecking of Section 3.2.5 would be
possible, but would become more difficult with an increas-
ing number of tubes. Concerning ropes, the problem is
more intricate. Indeed, they consist usually of a huge set
of SWNT with a distribution of diameters and helicities.
More importantly, they can be highly disordered, having
different tube axis directions or being twisted with respect
to each other [15]. However, ropes of tubes with a unique
helicity and diameters were recently formed and studied
by electron diffraction [14]. Their equatorial line and ap-
parent helicities were analysed. The present method and
in particular the analysis of the non-equatorial line could
be used. The determination of chiral indices of nanotube
of other species, like BN or WS2 could also in principle
be studied, because the underlying theory can be easily
adapted to all kinds of honeycombs structure [17].

5 Conclusion

We have presented a detailed method, exemplified by one
example, for determining the chiral indices of DWNT.
This method relies on the semi-quantitative analysis of
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the whole diffraction pattern of a nanotube. Simulation
of the diffracted intensity and extensive comparison with
theory is needed. This method is accurate enough to un-
ambiguously give the chiral indices of SWNT’s of radii on
the order of 20 Å, given overestimated initial uncertain-
ties of the order of ±12% for the diameters, and ±0.6◦
for the (apparent) helicities. We crosschecked this affir-
mation by analysing both the regions of the diffraction
pattern of a DWNT where its two constituant tubes con-
tribute independently and the regions where their con-
tributions interfere. Using this method, SWNT of large
diameter could be studied. The chiral indices of each tube
constituting a MWNT are also possible. Contrary to spec-
troscopic methods, which rely on some empirical parame-
ter, we show that the present method does not rely on any
free parameters. In particular, the knowledge of the exact
value of the carbon-carbon bond length dcc is not needed.
This method could be systematically used in the future to
combine physical measurements with structural determi-
nation of chiral indices on nanotubes, as previously shown
in favourable cases [11].

Ph. Lambin and L. Henrard provided us with the FORTRAN
code of DIFFRACT and many explanations on it. It’s a plea-
sure to thanks L. Henrard, Ph. Lambin, A. Lucas, J-F. Colomer
and P. Launois for the constant discussions about nanotubes
diffraction. We thank O. Stéphan and L. Henrard for their
careful reading of the manuscript and their suggestions to im-
prove it. We are grateful to Y. Saito for providing us with the
samples, and T. Saito and Y. Sasaki for their assistance in
using IP.
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